Energy-Dependent Composition of UHECRs and the Future of Charged Particle Astronomy.
Outline

• The cosmic ray spectrum

• The current hunt for possible sources

• The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition

• Diffusion

• The role of galactic sources, anisotropy, and spectral features
Outline

- The cosmic ray spectrum
- The current hunt for possible sources
- The Pierre Auger Observatory (PAO) and its energy-dependent chemical composition
- Diffusion
- The role of galactic sources, anisotropy, and spectral features

[AC, Kusenko, Nagataki]
- $E < 1\text{ GeV}$ solar modulation make studies of the primary cosmic ray spectrum very complex

- $1\text{ GeV} < E < 10^9\text{ GeV}$
 - galactic origin
 - $E > 10^5\text{ GeV}$ supernova explosion into stellar wind
 - Spectral feature around $3 \times 10^6\text{ GeV}$: "knee"
 - Rigidity dependent transition
 - Probe of the magnetic spectrum
 - Second spectral break around $10^{8.6}\text{ GeV}$: "second knee"?
• $E > 10^9$ GeV Ultra High Energy Cosmic Rays (UHECRs)
 – Transition from galactic to extragalactic sources: "ankle"
 – "Pair production dip", consistent with proton primary and galactic to extragalactic transition at the second knee
Above the Ankle

UHECRs above the "ankle" ($E > 10^9 \text{GeV}$) are believed to be of extragalactic origin for many reasons:
UHECRs above the "ankle" ($E > 10^9$ GeV) are believed to be of extragalactic origin for many reasons:

- Lack of plausible galactic sources
Above the Ankle

UHECRs above the "ankle" ($E > 10^9 \text{ GeV}$) are believed to be of extragalactic origin for many reasons:

- Lack of plausible galactic sources
- Gyroradius comparable to disk thickness, incompatible with particle confinement
Above the Ankle

UHECRs above the "ankle" \((E > 10^9 \text{ GeV})\) are believed to be of extragalactic origin for many reasons:

- Lack of plausible galactic sources
- Gyroradius comparable to disk thickness, incompatible with particle confinement
- Lack of galactocentric anisotropy
Above the Ankle

UHECRs above the ”ankle” \((E > 10^9 \text{ GeV})\) are believed to be of extragalactic origin for many reasons:

• Lack of plausible galactic sources

• Gyroradius comparable to disk thickness, incompatible with particle confinement

• Lack of galactocentric anisotropy

These reasons seem compelling, but are they supported by the latest data?
Auger Anisotropy Study

Auger PRL 104 (2010) 091101
Auger Anisotropy Study

- Correlation with AGNs originally confirmed at $>99\%$
- Signal has decreased over time but still disfavors the null hypothesis
HiRes Anisotropy Study
Auger energy-dependent chemical composition

[Auger PRL 104 (2010) 091101]
The change in composition is corroborated by the Yakutsk experiment, but not by the HiRes experiment!
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:

- Lack of plausible galactic sources
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:

- Lack of plausible galactic sources
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:

- **Lack of plausible galactic sources**
 - Hypernovae
 - Collapsars
 - Unusual Supernovae
 - GRBs
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:

- **Lack of plausible galactic sources**
 - Hypernovae
 - Collapsars
 - Unusual Supernovae
 - GRBs

- Gyroradius incompatible with particle confinement *unless* Z is large
Could there be another explanation?

Reconsidering the extra galactic origin in view of the recent PAO discovery:

- **Lack of plausible galactic sources**
 - Hypernovae
 - Collapsars
 - Unusual Supernovae
 - GRBs

- **Gyroradius incompatible with particle confinement** *unless* Z *is large*

- **Lack of galactocentric anisotropy compatible with large Z**
Interpreting the PAO Results

There exist two possible alternatives:
Interpreting the PAO Results

There exist two possible alternatives:

- The segregation occurs at the source with a heavy element favored acceleration mechanism.

 This is unlikely because of photodissociation
Interpreting the PAO Results

There exist two possible alternatives:

- The segregation occurs at the source with a heavy element favored acceleration mechanism.

 This is unlikely because of photodissociation

- The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.
Interpreting the PAO Results

There exist two possible alternatives:

- The segregation occurs at the source with a heavy element favored acceleration mechanism.

 This is unlikely because of photodissociation

- The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.

 This is exactly what you would expect for Galactic sources...
Interpreting the PAO Results

There exist two possible alternatives:

- The segregation occurs at the source with a heavy element favored acceleration mechanism.

 This is unlikely because of photodissociation

- The acceleration mechanism affects all the particles the same way and the segregation occurs during the transport of the nuclei.

This is exactly what you would expect for Galactic sources...

Are we probing a different mode of the magnetic spectrum?
Two different regimes depending on the energy of the particle
Diffusion

Critical energy E_0 where $r_L = l_c$

For $E < E_0$, we get $l_c >> r_L$

- mean free path $\sim l$
- $D = \frac{l}{3} \equiv D_0$

For $E > E_0$, we get $l_c \sim r_L$

- random walk
- mean free path $>> l$
- $D = D_0 \left(\frac{E}{E_0} \right)^2$
Diffusion

Critical energy E_0 where $r_L = l_c$

For $E < E_0$, we get $l_c \gg r_L$

- mean free path $\sim l$
- $D = \frac{l}{3} \equiv D_0$

For $E > E_0$, we get $l_c \sim r_L$

- random walk
- mean free path $\gg l$
- $D = D_0 \left(\frac{E}{E_0}\right)^2$

E_0 depends on the charge of the nuclei
For a particle with charge $q_i = eZ_i$, we get a critical energy $E_{0,i}$ with $r_{L,i} = l_c$:

- $r_{L,i} = \frac{E}{Bq_i}$

- $E_{0,i} = eBl_cZ_i$

- $E_{0,i} = Z_i \times (10^8 \text{ eV}) \left(\frac{B}{3 \times 10^{-6} \text{ G}} \right) \left(\frac{l_c}{0.3 \text{ kpc}} \right)$
Diffusion with Non-Unit Charge

For a particle with charge $q_i = eZ_i$, we get a critical energy $E_{0,i}$ with $r_{L,i} = l_c$:

- $r_{L,i} = \frac{E}{Bq_i}$

- $E_{0,i} = eBl_cZ_i$

- $E_{0,i} = Z_i \times (10^8 \text{ eV}) \left(\frac{B}{3 \times 10^{-6} \text{ G}}\right) \left(\frac{l_c}{0.3 \text{ kpc}}\right)$

The diffusion coefficient is therefore:

$$D_i(E) = \begin{cases}
D_0 \left(\frac{E}{E_{0,i}}\right)^{\delta_1} & E \leq E_{0,i}, \\
D_0 \left(\frac{E}{E_{0,i}}\right)^{(2-\delta_2)} & E > E_{0,i}
\end{cases}$$
Diffusion Equation

For a **point-like source**:

\[Q_i(E, \vec{r}) = Q_0 \xi_i \left(\frac{E}{E_{0,i}} \right)^{-\gamma} \delta(\vec{r}) \]

We solve the following differential equation:

\[
\frac{\partial n_i}{\partial t} - \vec{\nabla}(D_i \vec{\nabla} n_i) + \frac{\partial}{\partial E}(b_i n_i) = Q_i(E, \vec{r}, t) + \sum_k \int P_{ik}(E, E') n_k(E') dE'
\]
Diffusion Equation

For a point-like source:

\[Q_i(E, \vec{r}) = Q_0 \xi_i \left(\frac{E}{E_{0,i}} \right)^{-\gamma} \delta(\vec{r}) \]

We solve the following differential equation:

\[
\frac{\partial n_i}{\partial t} - \vec{\nabla} \left(D_i \vec{\nabla} n_i \right) + \frac{\partial}{\partial E} \left(b_i n_i \right) = Q_i(E, \vec{r}, t) + \sum_k \int P_{ik}(E, E') n_k(E') dE'
\]

Below GZK energies, energy losses are negligible thus we only consider diffusion terms.
Solution

The flux is:

\[n_i(E, r) = \frac{Q_0}{4\pi r D_i(E)} \left(\frac{E}{E_{0,i}} \right)^{-\gamma} \]

with diffusion time \(t_D \):

\[t_D \sim \frac{R^2}{D_i} \sim 10^7 \text{yr} \left(\frac{R}{10 \text{ kpc}} \right)^2 \left(\frac{Z_i}{26} \times \frac{10^{19} \text{ eV}}{E} \right)^{2-\delta_2} \]
Consequences
Consequences

- Diffusion is energy dependent
Consequences

- Diffusion is energy dependent

The spectral slope changes at $E \sim E_{0,i}$
Consequences

• Diffusion is energy dependent

The spectral slope changes at \(E \sim E_{0,i} \)

• The flux drops dramatically because the particles escape from the galaxy
Consequences

• Diffusion is energy dependent

\textbf{The spectral slope changes at} \(E \sim E_{0,i} \)

• The flux drops dramatically because the particles escape from the galaxy

• Diffusion time depends on charge
Consequences

- Diffusion is energy dependent

 The spectral slope changes at $E \sim E_{0,i}$

- The flux drops dramatically because the particles escape from the galaxy

- Diffusion time depends on charge

 Diffusion times for nuclei are longer than for protons of the same energy
Consequences

- Diffusion is energy dependent

 The spectral slope changes at $E \sim E_{0,i}$

- The flux drops dramatically because the particles escape from the galaxy

- Diffusion time depends on charge

 Diffusion times for nuclei are longer than for protons of the same energy

- The flux drops for protons at lower energies than heavy nuclei
Energy-dependent composition due to diffusion
protons, C, Fe
The Source Problem (with some overlap)

Galactic sources are likely to exist, and more pertinently, *to have existed*:
Galactic sources are likely to exist, and more pertinently, to have existed:

- Hypernovae
 - hypergiants, which have masses from 100 to over 300 times M_\odot
The Source Problem (with some overlap)

Galactic sources are likely to exist, and more pertinently, to have existed:

- Hypernovae
 - hypergiants, which have masses from 100 to over 300 times M_\odot

- Collapsars
 - Large rotating black hole formed by the collapse of the core of a Wolf-Rayet star
The Source Problem (with some overlap)

Galactic sources are likely to exist, and more pertinently, to have existed:

- Hypernovae
 - Hypergiants, which have masses from 100 to over 300 times M_\odot

- Collapsars
 - Large rotating black hole formed by the collapse of the core of a Wolf-Rayet star

- Unusual Supernovae
The Source Problem (with some overlap)

Galactic sources are likely to exist, and more pertinently, to have existed:

- Hypernovae
 - Hypergiants, which have masses from 100 to over 300 times M_\odot

- Collapsars
 - Large rotating black hole formed by the collapse of the core of a Wolf-Rayet star

- Unusual Supernovae

- GRBs
GRBs as Possible Galactic Candidates

- GRBs have been proposed as sources of extragalactic UHECRs [Vietri; Waxman; Dermer]

- Galactic GRBs have been considered as sources of UHECRs [Dermer et al., Biermann et al.]

- Past Galactic GRBs have been considered as the explanation of 511 keV line from the Galactic Center [Bertone, et al.; Parizot et al.; AC, Kusenko], as well as the electron excess of PAMELA/Fermi [Ioka; AC, Kusenko]
What are GRBs

- **Long GRBs:**
 - associated with core-collapse supernovae
 - correlation with star-forming metal-poor galaxies

- **Short GRBs:**
 - probably mergers of compact stars or black holes
 - likely less beamed

- Both should have happened in our own Galaxy in the past, at a combined rate of one per $10^4 - 10^6$ years
Nuclei Acceleration in GRBs

Internal Shock

The nuclei can survive if:

- Internal shock radius is large
- Large Lorentz factor of the relativistic jets
- (And/Or) In the presence of a synchrotron self-absorption break

External Shock

- Large dissipation radii item Nuclei can easily survive
Distribution of GRBs in the Milky Way

Supernovae or long GRBs, assuming they follow star counts [Bahcall et al.]

Short GRBs, based on observed distribution in other galaxies [Cui, Aoi, Nagataki]

We generate 1000 GRBs separated in time with $\bar{\Delta}t = 10^5$ years (note that average time is irrelevant as long as $t_{diff} > t_{rep}$)
Comparison with Pierre Auger data

Protons, Fe, Overall Spectrum

$E^3 \times dN/dE (\text{GeV}^2 \text{km}^2 \text{s}^{-1} \text{sr}^{-1})$

[AC, Kusenko, Nagataki]
Comparison with Pierre Auger data

- Spectrum fairly insensitive to diffusion spectral indices; here \(D(E < E_0) \propto E^{0.3} \) and \(D(E > E_0) \propto E^2 \)
- \(B = 4 \mu \text{G} \), consistent with current observation of the galactic magnetic field
- Index of the injection spectrum \(\gamma = 2.3 \): relativistic shock acceleration
- 10% iron and 90% proton
- \(l_c = 200 \text{ pc} \)
Magnetic Field Length Scale
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu G$ and $l_c \sim 55$ pc
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu \text{G}$ and $l_c \sim 55 \text{ pc}$

 Based on single cell-size models of Galactic random fields
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu G$ and $l_c \sim 55 \text{pc}$

 Based on single cell-size models of Galactic random fields

- Stellar wind and supernova explosions inject turbulent energy into ISM on the 10 – 100 pc scales
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu G$ and $l_c \sim 55$ pc

 Based on single cell-size models of Galactic random fields

- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10 - 100$ pc scales

 Energy transferred to smaller scales via direct cascade
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu G$ and $l_c \sim 55 \text{ pc}$

 Based on single cell-size models of Galactic random fields

- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10 - 100 \text{ pc}$ scales

 Energy transferred to smaller scales via direct cascade
 Energy transferred to larger scales via inverse cascade of magnetic helicity
Magnetic Field Length Scale

- Best fit for average random field and scale length $B \sim 5 \mu G$ and $l_c \sim 55 \text{ pc}$
 Based on single cell-size models of Galactic random fields

- Stellar wind and supernova explosions inject turbulent energy into ISM on the $10 - 100 \text{ pc}$ scales
 Energy transferred to smaller scales via direct cascade
 Energy transferred to larger scales via inverse cascade of magnetic helicity

Dramatic change in the spectral slope of the magnetic energy $E_B(k)$ around
$\sim 0.1 \text{ kpc}$
Composite Magnetic Energy Spectrum

[Han, Ferriere and Manchester, ApJ. 610, 820 (2004)]
Comparison with Pierre Auger data

Protons, Fe, Overall Spectrum
Comparison with Pierre Auger data

Protons, Fe, Overall Spectrum

Energy requirement only 10^{46} erg compared to 10^{50} erg for extragalactic GRBs
Galactocentric anisotropy (sources follow stars)

\[\frac{\Delta}{ Total \ Fe \ p} \times 10^{8,5,10} \]

[AC, Kusenko, Nagataki]
Clusters of events from recent/closest GRBs

supernovae/long GRBs

short GRBs
Extragalactic Component
Extragalactic Component

Since the protons leak out of other galaxies as well Extragalactic protons must also contribute to the overall spectrum above 10^{18} eV, and any anisotropy would be diluted by magnetic fields
Extragalactic Component

Since the protons leak out of other galaxies as well Extragalactic protons must also contribute to the overall spectrum above 10^{18} eV, and any anisotropy would be diluted by magnetic fields.

Sources within ~ 100 Mpc:

- extragalactic GRBs
- AGNs [Essey, Kusenko]

These contribution should not be significant until $\sim 3 \times 10^{10}$ GeV where energy losses for the galactic component become significant.
Implications for charged-particle astronomy
Implications for charged-particle astronomy

- Correlations with extragalactic sources are expected for protons at the highest energies:
 - The ability to separate protons from nuclei is essential for observing such correlations
 - The realization that IGMFs are as small as femtogauss further improves the prospects of observing distant sources [Ando, Kusenko, ApJ 722, L39]
Implications for charged-particle astronomy

- Correlations with extragalactic sources are expected for protons at the highest energies:
 - The ability to separate protons from nuclei is essential for observing such correlations
 - The realization that IGMFs are as small as femtogauss further improves the prospects of observing distant sources [Ando, Kusenko, ApJ 722, L39]

- Galactic component (nuclei) can be used to understand the power spectrum of galactic magnetic fields
Implications for charged-particle astronomy

• Correlations with extragalactic sources are expected for protons at the highest energies:
 – The ability to separate protons from nuclei is essential for observing such correlations
 – The realization that IGMFs are as small as femtogauss further improves the prospects of observing distant sources [Ando, Kusenko, ApJ 722, L39]

• Galactic component (nuclei) can be used to understand the power spectrum of galactic magnetic fields

• Hot spots in galactic nuclei can point to the locations of the recent/closest GRBs. Can they be connected with some mass extinctions on Earth?
The Future

Improvement we are in the process of making:

- Inclusion of coherent component of the magnetic field
- Treatment of more realistic source models
- Improve propagation model at high energy to include energy losses
- Include extragalactic sources
- Investigate neutrino signal
Summary

The energy-dependent composition observed by PAO motivates alternative solutions to the origin of UHECRs: **Galactic Sources**
Summary

The energy-dependent composition observed by PAO motivates alternative solutions to the origin of UHECRs: **Galactic Sources**

- Energy dependent diffusion coefficient offers a solution to the dominance of nuclei at $10^{18} - 10^{19}$ eV

- The diffusion process within galactic magnetic fields maintains the galactocentric anisotropy below a few percents

- Many possible source exist within the Milky Way

 As long as event rate exceeds $1/10^8$ year

- The apparent clustering could be the result of the most recent event
Extra Slides